<u>Exercise 8.1 (Revised) - Chapter 8 - Quadrilaterals - Ncert Solutions class 9 -</u> Maths

Updated On 11-02-2025 By Lithanya

Chapter 8 - Quadrilaterals - NCERT Solutions for Class 9 Maths

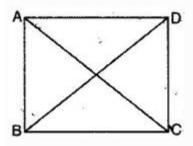
Ex 8.1 Question 1.

If the diagonals of a parallelogram are equal, show that it is a rectangle.

Answer.

Given: ABCD is a parallelogram with diagonal AC= diagonal BD

To prove: ABCD is a rectangle.



Proof: In triangles ABC and ABD,

AB = AB[Common]

AC = BD[Given]

AD = BC opp. Sides of $a\|_{gm}$

 $\therefore \triangle ABC \cong \triangle BAD[By SSS congruency]$

 $\Rightarrow \angle DAB = \angle CBA[By C.P.C.T.]$

But $\angle DAB + \angle CBA = 180^{\circ}$

 $|:AD|_{BC}$ and AB cuts them, the sum of the interior angles of the same side of transversal is 180°

From eq. (i) and (ii),

$$\angle DAB = \angle CBA = 90^{\circ}$$

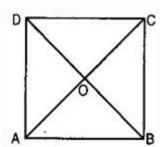
Hence ABCD is a rectangle.

Ex 8.1 Question 2.

Show that the diagonals of a square are equal and bisect each other at right angles.

Answer.

Given: ABCD is a square. AC and BD are its diagonals bisect each other at point O.



To prove: AC = BD and $AC \perp BD$ at point O.

Proof: In triangles ABC and BAD,

$$AB = AB[$$
 Common $]$

$$\angle ABC = \angle BAD = 90^{\circ}$$

BC = AD[Sides of a square]

 $\therefore \triangle ABC \cong \triangle BAD$ [By SAS congruency]

 $\Rightarrow AC = BD[By \text{ C.P.C.T.}] \text{Hence proved.}$

Now in triangles AOB and AOD,

AO = AO[Common]

 $\mathrm{AB} = \mathrm{AD}[$ Sides of a square]

 $\therefore \triangle AOB \cong \triangle AOD[By SSS congruency]$

 $\angle AOB = \angle AOD[By C.P.C.T.]$

But $\angle AOB + \angle AOD = 180^{\circ}$ [Linear pair]

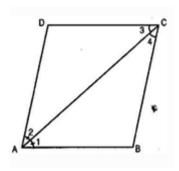
But $\angle AOB + \angle AOD = 180^{\circ}$ [Linear pair]

 $\therefore \angle AOB = \angle AOD = 90^{\circ}$

 \Rightarrow OA \perp BD or AC \perp BD Hence proved.

Ex 8.1 Question 3.

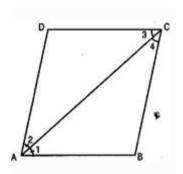
Diagonal AC of a parallelogram ABCD bisects $\angle \mathbf{A}$ (See figure). Show that:



- (i) It bisects $\angle \mathbf{C}$ also.
- (ii) ABCD is a rhombus.

Answer.

Diagonal AC bisects $\angle A$ of the parallelogram ABCD.



- (i) Since $AB|_{DC}$ and AC intersects them.
- $\therefore \angle 1 = \angle 3$ [Alternate angles]

Similarly $\angle 2 = \angle 4$

But $\angle 1 = \angle 2$ [Given]

 \therefore $\angle 3 = \angle 4$ [Using eq. (i), (ii) and (iii)]

Thus AC bisects $\angle C$.

(ii)
$$\angle 2=\angle 3=\angle 4=\angle 1$$

 $\Rightarrow \mathrm{AD} = \mathrm{CD}[$ Sides opposite to equal angles]

$$\therefore AB = CD = AD = BC$$

Hence ABCD is a rhombus.

Ex 8.1 Question 4.

ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that:

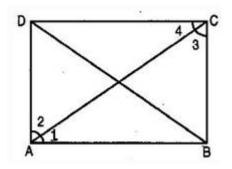
- (i) ABCD is a square.
- (ii) Diagonal BD bisects both \angle B as well as \angle D.

Answer

ABCD is a rectangle. Therefore $AB=DC\ldots$ (i)

 $\mathrm{And}\;BC=AD$

Also $\angle A = \angle B = \angle C = \angle D = 90^\circ$



(i) In $\triangle ABC$ and $\triangle ADC$

 $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$

[AC bisects $\angle A$ and $\angle C$ (given)]

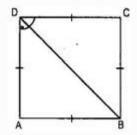
AC = AC[Common]

 $\therefore \Delta ABC \cong \triangle ADC[By \ ASA \ congruency]$

 $\Rightarrow AB = AD$

From eq. (i) and (ii), AB = BC = CD = AD

Hence ABCD is a square.



(ii) In $\triangle ABC$ and $\triangle ADC$

AB=BA[Since ABCD is a square

AD = DC[Since ABCD is a square]

BD = BD [Common]

 $\therefore \Delta ABD \cong \Delta CBD [By SSS congruency]$

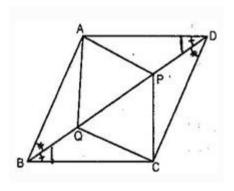
 $\Rightarrow \angle ABD = \angle CBD [By C.P.C.T.].....(iii)$

And $\angle ADB = \angle CDB[By C.P.C.T.]$ (i

From eq. (iii) and (iv), it is clear that diagonal BD bisects both $\angle B$ and $\angle D$.

Ex 8.1 Question 5.

In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP=BQ (See figure). Show that:



(i) \triangle APD \cong \triangle CQB

(ii) $\mathbf{AP} = \mathbf{CQ}$

(iii) $\triangle AQB \cong \triangle CPD$

(iv) AQ=CP

(v) APCQ is a parallelogram.

Answer.

(i) In $\triangle APD$ and $\triangle CQB$,

DP = BQ[Given]

 $\angle ADP = \angle QBC$ [Alternate angles (AD \parallel_{BC} and BD is transversal)]

 $\mathrm{AD} = \mathrm{CB}$ [Opposite sides of parallelogram]

 $\therefore \triangle APD \cong \triangle CQB$ [By SAS congruency]

(ii) Since $\triangle APD \cong \triangle CQB$

 \Rightarrow AP = CQ[By C.P.C.T.]

(iii) In $\triangle AQB$ and $\triangle CPD$,

BQ = DP[Given]

 $\angle ABQ = \angle PDC$ [Alternate angles (AB \parallel^{CD} and BD is transversal)]

AB = CD[Opposite sides of parallelogram]

 $\therefore \triangle AQB \cong \triangle CPD[$ By SAS congruency]

(iv) Since $\triangle AQB \cong \triangle CPD$

 $\Rightarrow \mathrm{AQ} = \mathrm{CP}[\mathrm{By} \; \mathsf{C.P.C.T.} \;]$

(v) In quadrilateral APCQ,

AP = CQ[proved in part (i)]

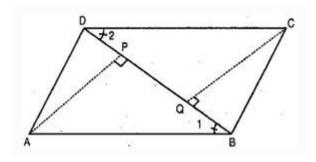
AQ = CP[proved in part (iv)]

Since opposite sides of quadrilateral APCQ are equal.

Hence APCQ is a parallelogram.

Ex 8.1 Question 6.

ABCD is a parallelogram and AP and CQ are the perpendiculars from vertices A and C on its diagonal BD (See figure). Show that:



(i) \triangle APB \cong $\triangle CQD$

(ii) $\mathbf{AP} = \mathbf{CQ}$

Answer.

Given: ABCD is a parallelogram. AP \perp BD and CQ \perp BD

To prove: (i) $\triangle APB \cong \triangle CQD$ (ii) AP = CQ

Proof: (i) In $\triangle APB$ and $\triangle CQD$,

 $\angle 1 = \angle 2$ [Alternate interior angles]

AB = CD[Opposite sides of a parallelogram are equal]

 $\angle APB = \angle CQD = 90^{\circ}$

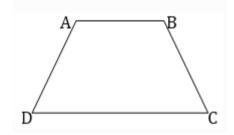
 $\therefore \triangle APB \cong \triangle CQD[$ By ASA Congruency]

(ii) Since $\triangle APB \cong \triangle CQD$

 $\therefore AP = CQ[By\ C.\ P.\ C.\ T.$

Ex 8.1 Question 7.

ABCD is a trapezium in which $AB\|CD$ and AD = BC (See figure). Show that:



(i) $\angle A = \angle B$

(ii) $\angle \mathbf{c} = \angle \mathbf{D}$

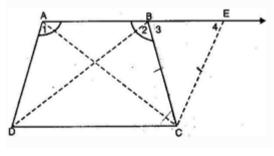
(iii) $\triangle ABC \cong \triangle BAD$

(iv) Diagonal AC = Diagonal BD

Answer.

Given: ABCD is a trapezium.

 $AB\|CD$ and AD=BC



To prove: (i) $\angle A = \angle B$

(ii) $\angle C = \angle D$

(iii) $\triangle ABC \cong \triangle BAD$

(iv) Diag. AC = Diag. BD

Construction: Draw CE | AD and extend

AB to intersect CE at E.

Proof: (i) As AECD is a parallelogram.[By construction]

 $\therefore AD = EC$

But AD = BC [Given]

 $\therefore BC = EC$

 \Rightarrow $\angle 3 = \angle 4$ [Angles opposite to equal sides are equal]

Now $\angle 1 + \angle 4 = 180^{\circ}$ [Interior angles]

And $\angle 2 + \angle 3 = 180^\circ$ [Linear pair]

$$\Rightarrow \angle 1 + \angle 4 = \angle 2 + \angle 3$$

$$\Rightarrow \angle 1 = \angle 2[\because \angle 3 = \angle 4]$$

$$\Rightarrow \angle A = \angle B$$

(ii) $\angle 3 = \angle$ C[Alternate interior angles]

And $\angle D = \angle 4$ [Opposite angles of a parallelogram]

But $\angle 3 = \angle 4$ [$\triangle BCE$ is an isosceles triangle]

$$\therefore \angle C = \angle D$$

(iii) In $\triangle ABC$ and $\triangle BAD$,

AB = AB [Common]

 $\angle 1 = \angle 2$ [Proved]

$$AD = BC$$
 [Given]

 $\therefore \triangle ABC \cong \triangle BAD[By SAS congruency]$

(iv) We had observed that,

 $\therefore \triangle ABC \cong \triangle BAD$

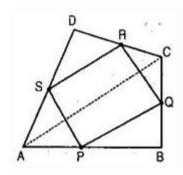
 \Rightarrow AC = BD [By C.P.C.T.]

Updated On 11-02-2025 By Lithanya

Chapter 8 - Quadrilaterals - NCERT Solutions for Class 9 Maths

Ex 8.2 Question 1.

ABCD is a quadrilateral in which P,Q,R and S are the mid-points of sides AB,BC,CD and DA respectively (See figure). AC is a diagonal. Show that:



(i) SR AC and $SR = \frac{1}{2} AC$

(ii) $\mathbf{PQ} = \mathbf{SR}$

(iii) PQRS is a parallelogram.

Answer.

In $\triangle ABC$, P is the mid-point of AB and Q is the mid-point of BC.

Then $PQ\|AC$ and $PQ = \frac{1}{2}AC$

(i) In $\triangle ACD$, R is the mid-point of CD and S is the mid-point of AD.

Then $SR\|AC$ and $SR=rac{1}{2}\!\mathrm{AC}$

(ii) Since $PQ=\frac{1}{2}\!\mathrm{AC}$ and $SR=\frac{1}{2}\!\mathrm{AC}$

Therefore, PQ = SR

(iii) Since $PQ\|AC$ and $SR\|AC$

Therefore, PQ II SR [two lines parallel to given line are parallel to each other]

Now PQ = SR and $PQ \| SR$

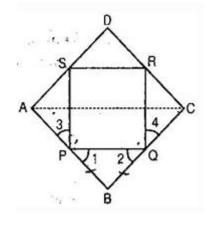
Therefore, PQRS is a parallelogram.

Ex 8.2 Question 2.

ABCD is a rhombus and P,Q,R,S are mid-points of AB,BC,CD and DA respectively. Prove that quadrilateral PQRS is a rectangle.

Answer.

Given: P, Q, R and S are the mid-points of respective sides AB, BC, CD and DA of rhombus. PQ, QR, RS and SP are joined.



To prove: PQRS is a rectangle.

Construction: Join A and C.

Proof: In $\triangle ABC$, P is the mid-point of AB and Q is the mid-point of BC.

$$\therefore PQ \| AC \text{ and } PQ = \frac{1}{2}AC$$

In $\triangle ADC, R$ is the mid-point of CD and S is the mid-point of AD.

 $\therefore SR \| AC \text{ and } SR = \frac{1}{2}AC$

From eq. (i) and (ii), $PQ^{\parallel}\mathrm{SR}$ and $\mathrm{PQ}=\mathrm{SR}$

 $\therefore PQRS$ is a parallelogram.

Now ABCD is a rhombus. [Given]

$$\therefore AB = BC$$

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC \Rightarrow PB = BQ$$

 \therefore $\angle 1 = \angle 2$ [Angles opposite to equal sides are equal]

Now in triangles APS and CQR, we have,

 $AP=CQ[P ext{ and } Q ext{ are the mid-points of } AB ext{ and } BC ext{ and } AB=BC]$

Similarly, AS = CR and PS = QR [Opposite sides of a parallelogram]

 $\therefore \triangle APS \cong \triangle CQR$ [By SSS congreuancy]

$$\Rightarrow \angle 3 = \angle 4 \text{ [By C.P.C.T.]}$$

Now we have $\angle 1 + \angle \mathrm{SPQ} + \angle 3 = 180^\circ$

And $\angle 2 + \angle PQR + \angle 4 = 180^{\circ}$ [Linear pairs]

$$\therefore \angle 1 + \angle SPQ + \angle 3 = \angle 2 + \angle PQR + \angle 4$$

Since $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ [Proved above]

$$\therefore \angle SPQ = \angle PQR$$

Now PQRS is a parallelogram [Proved above]

$$\therefore \angle SPQ + \angle PQR = 180^{\circ}$$

(iv) [Interior angles]

Using eq. (iii) and (iv),

$$\angle SPQ + \angle SPQ = 180^{\circ} \Rightarrow 2\angle SPQ = 180^{\circ}$$

$$\Rightarrow \angle SPQ = 90^{\circ}$$

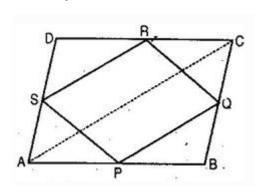
Hence PQRS is a rectangle.

Ex 8.2 Question 3.

ABCD is a rectangle and P,Q,R and S are the mid-points of the sides AB,BC,CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Answer.

Given: A rectangle ABCD in which P,Q,R and S are the mid-points of the sides AB,BC,CD and DA respectively. PQ,QR,RS and SP are joined.



To prove: PQRS is a rhombus.

Construction: Join AC.

Proof: In $\triangle ABC$, P and Q are the mid-points of sides AB, BC respectively.

 $\therefore PQ \| AC$ and $PQ = \frac{1}{2}AC$

In $\triangle ADC$, R and S are the mid-points of sides CD, AD respectively.

 $\therefore SR ||AC|$ and $SR = \frac{1}{2}AC$

From eq. (i) and (ii), $PQ\|SR$ and PQ=SR

∴ PQRS is a parallelogram.

Now ABCD is a rectangle. [Given]

AD = BC

$$\Rightarrow \frac{1}{2}AD = \frac{1}{2}BC \Rightarrow AS = BQ$$

In triangles APS and BPQ,

AP = BP[P is the mid-point of AB]

 $\angle PAS = \angle PBQ [Each 90^{\circ}]$

And AS=BQ[From eq. (iv)]

 $\therefore \triangle APS \cong \triangle BPQ$ [By SAS congruency]

 $\Rightarrow PS = PQ[By \text{ C.P.C.T.}]$

From eq. (iii) and (v), we get that PQRS is a parallelogram.

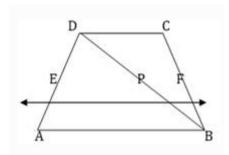
 $\Rightarrow PS = PQ$

 \Rightarrow Two adjacent sides are equal.

Hence, PQRS is a rhombus.

Ex 8.2 Question 4.

ABCD is a trapezium, in which AB||DC,BD is a diagonal and E is the mid-point of AD.A line is drawn through E, parallel to AB intersecting BC at F (See figure). Show that F is the mid-point of BC.



Answer.

Let diagonal BD intersect line EF at point P.

In $\triangle DAB$,

E is the mid-point of AD and $EP\|AB[\because EF\|AB$ (given) P is the part of EF

 $\therefore P$ is the mid-point of other side, BD of $\triangle DAB$.

[A line drawn through the mid-point of one side of a triangle, parallel to another side intersects the third side at the mid-point]

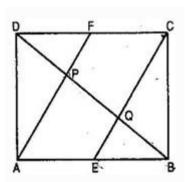
Now in $\triangle BCD$,

P is the mid-point of BD and $PF\|DC[\because EF\|AB$ (given) and $AB\|DC$ (given)]

- $\therefore EF \| DC$ and PF is a part of EF.
- \therefore F is the mid-point of other side, BC of $\triangle BCD$. [Converse of mid-point of theorem]

Ex 8.2 Question 5.

In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (See figure). Show that the line segments AF and EC trisect the diagonal BD.



Answer.

Since E and F are the mid-points of AB and CD respectively.

$$\therefore AE = \frac{1}{2}AB$$
 and $CF = \frac{1}{2}CD$(i)

But ABCD is a parallelogram.

 $\therefore AB = CD$ and $AB|_{DC}$

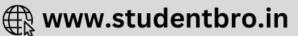
 $\Rightarrow rac{1}{2} AB = rac{1}{2} CD$ and $AB \parallel_{DC}$

 $\Rightarrow AE = FC$ and $AE \parallel^{FC} [$ From eq. (i)]

: AECF is a parallelogram.

 \Rightarrow FA \| CE \Rightarrow FP \| CQ [FP is a part of FA and CQ is a part of CE]

Since the segment drawn through the mid-point of one side of a triangle and parallel to the other side bisects the third side.



In $\triangle DCQ$, F is the mid-point of CD and \Rightarrow FP \parallel CQ

 $\therefore P$ is the mid-point of DQ.

$$\Rightarrow DP = PQ$$

Similarly, In $\triangle ABP, E$ is the mid-point of AB and $\Rightarrow EQ\|AP$

 $\therefore Q$ is the mid-point of BP.

$$\Rightarrow BQ = PQ$$

From eq. (iii) and (iv),

$$DP = PQ = BQ \dots (v)$$

Now
$$BD = BQ + PQ + DP = BQ + BQ + BQ = 3BQ$$

$$\Rightarrow$$
 BQ = $\frac{1}{3}$ BD

From eq. (v) and (vi),

$$DP = PQ = BQ = \frac{1}{3}BD$$

 \Rightarrow Points P and Q trisects BD.

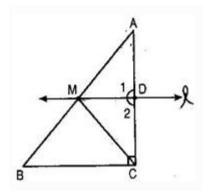
So AF and CE trisects BD.

Ex 8.2 Question 6.

ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D.

Answer.

(i) In $\triangle ABC, M$ is the mid-point of AB [Given]



MD||BC

 \therefore AD = DC [Converse of mid-point theorem]

Thus D is the mid-point of AC.

(ii) $l \| \mathrm{BC}$ (given) consider AC as a transversal.

$$\therefore \angle 1 = \angle$$
 C [Corresponding angles]

$$\Rightarrow$$
 $\angle 1 = 90^{\circ} [\angle C = 90^{\circ}]$

Thus MD \perp AC.

(iii) In $\triangle AMD$ and $\triangle CMD$,

 $\mathrm{AD} = \mathrm{DC}$ [proved above]

 $ngle 1=lpha 2=90^\circ$ [proved above]

MD=MD [common]

 $\therefore \triangle AMD \cong \triangle CMD$ [By SAS congruency]

$$\Rightarrow \mathrm{AM} = \mathrm{CM}$$
 [By C.P.C.T.]

Given that M is the mid-point of AB.

$$\therefore AM = \frac{1}{2}AB$$

From eq. (i) and (ii),

$$CM = AM = \frac{1}{2}AB$$

